Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Dynamical assessment of fluorescent probes mobility in poplar cell walls reveals nanopores govern saccharification.

Identifieur interne : 000F48 ( Main/Exploration ); précédent : 000F47; suivant : 000F49

Dynamical assessment of fluorescent probes mobility in poplar cell walls reveals nanopores govern saccharification.

Auteurs : Mickaël Herbaut [France] ; Aya Zoghlami [France] ; Gabriel Paës [France]

Source :

RBID : pubmed:30305844

Abstract

Background

Improving lignocellulolytic enzymes' diffusion and accessibility to their substrate in the plant cell walls is recognised as a critical issue for optimising saccharification. Although many chemical features are considered as detrimental to saccharification, enzymes' dynamics within the cell walls remains poorly explored and understood. To address this issue, poplar fragments were submitted to hot water and ionic liquid pretreatments selected for their contrasted effects on both the structure and composition of lignocellulose. In addition to chemical composition and porosity analyses, the diffusion of polyethylene glycol probes of different sizes was measured at three different time points during the saccharification.

Results

Probes' diffusion was mainly affected by probes size and pretreatments but only slightly by saccharification time. This means that, despite the removal of polysaccharides during saccharification, diffusion of probes was not improved since they became hindered by changes in lignin conformation, whose relative amount increased over time. Porosity measurements showed that probes' diffusion was highly correlated with the amount of pores having a diameter at least five times the size of the probes. Testing the relationship with saccharification demonstrated that accessibility of 1.3-1.7-nm radius probes measured by FRAP on non-hydrolysed samples was highly correlated with poplar digestibility together with the measurement of initial porosity on the range 5-20 nm.

Conclusion

Mobility measurements performed before hydrolysis can serve to explain and even predict saccharification with accuracy. The discrepancy observed between probes' size and pores' diameters to explain accessibility is likely due to biomass features such as lignin content and composition that prevent probes' diffusion through non-specific interactions probably leading to pores' entanglements.


DOI: 10.1186/s13068-018-1267-9
PubMed: 30305844
PubMed Central: PMC6169017


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Dynamical assessment of fluorescent probes mobility in poplar cell walls reveals nanopores govern saccharification.</title>
<author>
<name sortKey="Herbaut, Mickael" sort="Herbaut, Mickael" uniqKey="Herbaut M" first="Mickaël" last="Herbaut">Mickaël Herbaut</name>
<affiliation wicri:level="3">
<nlm:affiliation>Fractionation of AgroResources and Environment (FARE) Laboratory, INRA, University of Reims Champagne-Ardenne, Reims, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Fractionation of AgroResources and Environment (FARE) Laboratory, INRA, University of Reims Champagne-Ardenne, Reims</wicri:regionArea>
<placeName>
<region type="region">Grand Est</region>
<region type="old region">Champagne-Ardenne</region>
<settlement type="city">Reims</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Zoghlami, Aya" sort="Zoghlami, Aya" uniqKey="Zoghlami A" first="Aya" last="Zoghlami">Aya Zoghlami</name>
<affiliation wicri:level="3">
<nlm:affiliation>Fractionation of AgroResources and Environment (FARE) Laboratory, INRA, University of Reims Champagne-Ardenne, Reims, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Fractionation of AgroResources and Environment (FARE) Laboratory, INRA, University of Reims Champagne-Ardenne, Reims</wicri:regionArea>
<placeName>
<region type="region">Grand Est</region>
<region type="old region">Champagne-Ardenne</region>
<settlement type="city">Reims</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Paes, Gabriel" sort="Paes, Gabriel" uniqKey="Paes G" first="Gabriel" last="Paës">Gabriel Paës</name>
<affiliation wicri:level="3">
<nlm:affiliation>Fractionation of AgroResources and Environment (FARE) Laboratory, INRA, University of Reims Champagne-Ardenne, Reims, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Fractionation of AgroResources and Environment (FARE) Laboratory, INRA, University of Reims Champagne-Ardenne, Reims</wicri:regionArea>
<placeName>
<region type="region">Grand Est</region>
<region type="old region">Champagne-Ardenne</region>
<settlement type="city">Reims</settlement>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2018">2018</date>
<idno type="RBID">pubmed:30305844</idno>
<idno type="pmid">30305844</idno>
<idno type="doi">10.1186/s13068-018-1267-9</idno>
<idno type="pmc">PMC6169017</idno>
<idno type="wicri:Area/Main/Corpus">000C29</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000C29</idno>
<idno type="wicri:Area/Main/Curation">000C29</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000C29</idno>
<idno type="wicri:Area/Main/Exploration">000C29</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Dynamical assessment of fluorescent probes mobility in poplar cell walls reveals nanopores govern saccharification.</title>
<author>
<name sortKey="Herbaut, Mickael" sort="Herbaut, Mickael" uniqKey="Herbaut M" first="Mickaël" last="Herbaut">Mickaël Herbaut</name>
<affiliation wicri:level="3">
<nlm:affiliation>Fractionation of AgroResources and Environment (FARE) Laboratory, INRA, University of Reims Champagne-Ardenne, Reims, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Fractionation of AgroResources and Environment (FARE) Laboratory, INRA, University of Reims Champagne-Ardenne, Reims</wicri:regionArea>
<placeName>
<region type="region">Grand Est</region>
<region type="old region">Champagne-Ardenne</region>
<settlement type="city">Reims</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Zoghlami, Aya" sort="Zoghlami, Aya" uniqKey="Zoghlami A" first="Aya" last="Zoghlami">Aya Zoghlami</name>
<affiliation wicri:level="3">
<nlm:affiliation>Fractionation of AgroResources and Environment (FARE) Laboratory, INRA, University of Reims Champagne-Ardenne, Reims, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Fractionation of AgroResources and Environment (FARE) Laboratory, INRA, University of Reims Champagne-Ardenne, Reims</wicri:regionArea>
<placeName>
<region type="region">Grand Est</region>
<region type="old region">Champagne-Ardenne</region>
<settlement type="city">Reims</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Paes, Gabriel" sort="Paes, Gabriel" uniqKey="Paes G" first="Gabriel" last="Paës">Gabriel Paës</name>
<affiliation wicri:level="3">
<nlm:affiliation>Fractionation of AgroResources and Environment (FARE) Laboratory, INRA, University of Reims Champagne-Ardenne, Reims, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Fractionation of AgroResources and Environment (FARE) Laboratory, INRA, University of Reims Champagne-Ardenne, Reims</wicri:regionArea>
<placeName>
<region type="region">Grand Est</region>
<region type="old region">Champagne-Ardenne</region>
<settlement type="city">Reims</settlement>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Biotechnology for biofuels</title>
<idno type="ISSN">1754-6834</idno>
<imprint>
<date when="2018" type="published">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>Background</b>
</p>
<p>Improving lignocellulolytic enzymes' diffusion and accessibility to their substrate in the plant cell walls is recognised as a critical issue for optimising saccharification. Although many chemical features are considered as detrimental to saccharification, enzymes' dynamics within the cell walls remains poorly explored and understood. To address this issue, poplar fragments were submitted to hot water and ionic liquid pretreatments selected for their contrasted effects on both the structure and composition of lignocellulose. In addition to chemical composition and porosity analyses, the diffusion of polyethylene glycol probes of different sizes was measured at three different time points during the saccharification.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>Results</b>
</p>
<p>Probes' diffusion was mainly affected by probes size and pretreatments but only slightly by saccharification time. This means that, despite the removal of polysaccharides during saccharification, diffusion of probes was not improved since they became hindered by changes in lignin conformation, whose relative amount increased over time. Porosity measurements showed that probes' diffusion was highly correlated with the amount of pores having a diameter at least five times the size of the probes. Testing the relationship with saccharification demonstrated that accessibility of 1.3-1.7-nm radius probes measured by FRAP on non-hydrolysed samples was highly correlated with poplar digestibility together with the measurement of initial porosity on the range 5-20 nm.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>Conclusion</b>
</p>
<p>Mobility measurements performed before hydrolysis can serve to explain and even predict saccharification with accuracy. The discrepancy observed between probes' size and pores' diameters to explain accessibility is likely due to biomass features such as lignin content and composition that prevent probes' diffusion through non-specific interactions probably leading to pores' entanglements.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">30305844</PMID>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>30</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Print">1754-6834</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>11</Volume>
<PubDate>
<Year>2018</Year>
</PubDate>
</JournalIssue>
<Title>Biotechnology for biofuels</Title>
<ISOAbbreviation>Biotechnol Biofuels</ISOAbbreviation>
</Journal>
<ArticleTitle>Dynamical assessment of fluorescent probes mobility in poplar cell walls reveals nanopores govern saccharification.</ArticleTitle>
<Pagination>
<MedlinePgn>271</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1186/s13068-018-1267-9</ELocationID>
<Abstract>
<AbstractText Label="Background" NlmCategory="UNASSIGNED">Improving lignocellulolytic enzymes' diffusion and accessibility to their substrate in the plant cell walls is recognised as a critical issue for optimising saccharification. Although many chemical features are considered as detrimental to saccharification, enzymes' dynamics within the cell walls remains poorly explored and understood. To address this issue, poplar fragments were submitted to hot water and ionic liquid pretreatments selected for their contrasted effects on both the structure and composition of lignocellulose. In addition to chemical composition and porosity analyses, the diffusion of polyethylene glycol probes of different sizes was measured at three different time points during the saccharification.</AbstractText>
<AbstractText Label="Results" NlmCategory="UNASSIGNED">Probes' diffusion was mainly affected by probes size and pretreatments but only slightly by saccharification time. This means that, despite the removal of polysaccharides during saccharification, diffusion of probes was not improved since they became hindered by changes in lignin conformation, whose relative amount increased over time. Porosity measurements showed that probes' diffusion was highly correlated with the amount of pores having a diameter at least five times the size of the probes. Testing the relationship with saccharification demonstrated that accessibility of 1.3-1.7-nm radius probes measured by FRAP on non-hydrolysed samples was highly correlated with poplar digestibility together with the measurement of initial porosity on the range 5-20 nm.</AbstractText>
<AbstractText Label="Conclusion" NlmCategory="UNASSIGNED">Mobility measurements performed before hydrolysis can serve to explain and even predict saccharification with accuracy. The discrepancy observed between probes' size and pores' diameters to explain accessibility is likely due to biomass features such as lignin content and composition that prevent probes' diffusion through non-specific interactions probably leading to pores' entanglements.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Herbaut</LastName>
<ForeName>Mickaël</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Fractionation of AgroResources and Environment (FARE) Laboratory, INRA, University of Reims Champagne-Ardenne, Reims, France.</Affiliation>
<Identifier Source="ISNI">0000 0004 1937 0618</Identifier>
<Identifier Source="GRID">grid.11667.37</Identifier>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zoghlami</LastName>
<ForeName>Aya</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Fractionation of AgroResources and Environment (FARE) Laboratory, INRA, University of Reims Champagne-Ardenne, Reims, France.</Affiliation>
<Identifier Source="ISNI">0000 0004 1937 0618</Identifier>
<Identifier Source="GRID">grid.11667.37</Identifier>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Paës</LastName>
<ForeName>Gabriel</ForeName>
<Initials>G</Initials>
<Identifier Source="ORCID">0000-0003-0239-9716</Identifier>
<AffiliationInfo>
<Affiliation>Fractionation of AgroResources and Environment (FARE) Laboratory, INRA, University of Reims Champagne-Ardenne, Reims, France.</Affiliation>
<Identifier Source="ISNI">0000 0004 1937 0618</Identifier>
<Identifier Source="GRID">grid.11667.37</Identifier>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2018</Year>
<Month>10</Month>
<Day>03</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Biotechnol Biofuels</MedlineTA>
<NlmUniqueID>101316935</NlmUniqueID>
<ISSNLinking>1754-6834</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Accessibility</Keyword>
<Keyword MajorTopicYN="N">Biomass</Keyword>
<Keyword MajorTopicYN="N">FRAP</Keyword>
<Keyword MajorTopicYN="N">PEG-rhodamine</Keyword>
<Keyword MajorTopicYN="N">Porosity</Keyword>
<Keyword MajorTopicYN="N">Pretreatment</Keyword>
<Keyword MajorTopicYN="N">Saccharification</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2018</Year>
<Month>06</Month>
<Day>11</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2018</Year>
<Month>09</Month>
<Day>20</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2018</Year>
<Month>10</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2018</Year>
<Month>10</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2018</Year>
<Month>10</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">30305844</ArticleId>
<ArticleId IdType="doi">10.1186/s13068-018-1267-9</ArticleId>
<ArticleId IdType="pii">1267</ArticleId>
<ArticleId IdType="pmc">PMC6169017</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Biotechnol Biofuels. 2016 Jan 19;9:12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26788125</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Bioeng. 2013 Jun;110(6):1674-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23280599</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1979 Sep 14;205(4411):1144-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17735052</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Chem Biomol Eng. 2011;2:121-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22432613</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ChemSusChem. 2015 Oct 26;8(20):3366-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26365899</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Bioeng. 2007 Sep 1;98(1):112-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17335064</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biomacromolecules. 2013 Jul 8;14(7):2196-205</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23721261</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Biofuels. 2016 Jan 26;9:18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26816528</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Bioeng. 1988 Aug 20;32(5):698-706</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18587771</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Bioeng. 2015 Feb;112(2):252-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25082660</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioresour Technol. 2013 May;136:469-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23567718</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioresour Technol. 2013 Sep;144:467-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23899571</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioresour Technol. 2010 Oct;101(19):7587-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20494571</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Chem. 2016 Nov 18;4:45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27917379</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Biofuels. 2018 Feb 27;11:52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29492107</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Phys Chem B. 2011 Apr 28;115(16):4810-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21466172</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Biotechnol. 2014 Jun;27:150-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24549148</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioresour Technol. 2012 Dec;126:208-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23073110</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Biol Macromol. 2008 Mar 1;42(2):83-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17996933</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Biofuels. 2017 Jan 14;10:15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28101142</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ChemSusChem. 2014 Jul;7(7):1942-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24903047</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Rev. 2016 Feb 24;116(4):2170-243</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26713458</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioresour Technol. 2011 Jul;102(13):6928-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21531133</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Pharm Res. 1999 Aug;16(8):1153-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10468014</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Biofuels. 2015 Dec 25;8:212</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26709354</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Cell Biol. 2005 Feb;15(2):84-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15695095</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Bioeng. 2014 Apr;111(4):719-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24249156</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Bioeng. 2011 Jan;108(1):22-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20812260</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Biofuels. 2017 Feb 7;10:36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28191037</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioresour Technol. 2016 Jan;199:68-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26403722</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2008;179(1):15-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18422906</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Biofuels. 2011 Feb 10;4:3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21310050</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>France</li>
</country>
<region>
<li>Champagne-Ardenne</li>
<li>Grand Est</li>
</region>
<settlement>
<li>Reims</li>
</settlement>
</list>
<tree>
<country name="France">
<region name="Grand Est">
<name sortKey="Herbaut, Mickael" sort="Herbaut, Mickael" uniqKey="Herbaut M" first="Mickaël" last="Herbaut">Mickaël Herbaut</name>
</region>
<name sortKey="Paes, Gabriel" sort="Paes, Gabriel" uniqKey="Paes G" first="Gabriel" last="Paës">Gabriel Paës</name>
<name sortKey="Zoghlami, Aya" sort="Zoghlami, Aya" uniqKey="Zoghlami A" first="Aya" last="Zoghlami">Aya Zoghlami</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000F48 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000F48 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:30305844
   |texte=   Dynamical assessment of fluorescent probes mobility in poplar cell walls reveals nanopores govern saccharification.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:30305844" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020